3D Bioplotter Research Papers

Displaying all papers by P. Sheshadri (2 results)

In vitro characterization of design and compressive properties of 3D-biofabricated/decellularized hybrid grafts for tracheal tissue engineering

Journal of the Mechanical Behavior of Biomedical Materials 2016 Volume 59, Pages 572–585

Infection or damage to the trachea, a thin walled and cartilage reinforced conduit that connects the pharynx and larynx to the lungs, leads to serious respiratory medical conditions which can often prove fatal. Current clinical strategies for complex tracheal reconstruction are of limited availability and efficacy, but tissue engineering and regenerative medicine approaches may provide viable alternatives. In this study, we have developed a new “hybrid graft” approach that utilizes decellularized tracheal tissue along with a resorbable polymer scaffold, and holds promise for potential clinical applications. First, we evaluated the effect of our decellularization process on the compression properties of…

Characterization of Material–Process–Structure Interactions in the 3D Bioplotting of Polycaprolactone

3D Printing and Additive Manufacturing 2015 Volume 2, Issue 1, Pages 20-31

Three-dimensional (3D) bioplotting is a melt-extrusion-based additive manufacturing process used to fabricate 3D scaffolds for tissue engineering applications. This study investigates the relationship between material rheology, process parameters, and scaffold characteristics during 3D bioplotting of polycaprolactone (PCL). The effects of two process parameters, extrusion temperature and nozzle diameter, on resultant scaffold structure and compression strength were studied using design of experiments. PCL scaffolds designed for a 24-well culture plate (Ø 14 mm × 2 mm) were bioplotted in a 0°/90° laydown pattern at three levels of extrusion temperature (80°C, 90°C, and 100°C) and two levels of nozzle inner diameter (0.3 and 0.4 mm) at…

PCL